
Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 99

I/O in Device Drivers

Creating a Driver that actually DOES something

This section extends the sample driver by introducing I/O processing via
IRPs, and interacting with the driver from user mode and from other
drivers.

Key Concepts :IRP, IRP Dispatching, Buffered I/O, Direct I/O,
IoControlCodes (IOCTLs)

Driver Entry Points

Driver

DriverEntry

ISR

IRP_MJ

IRP_MJ

IRP_MJ

IRP_MJ

IRP_MJ

IRP_MJ

IRP_MJ

StartIo()

DriverUnload

DPC

DriverEntry
Sets up
Majorfunction
Array for
incoming IRPs

FileSystem
Drivers use
StartIo()
function

DriverEntry also sets
DriverUnload (net stop)

Driver may register Interrupt
Service Routines (ISRs)…

..which, in turn, may queue
Deferred Procedure Calls (DPCs)

I/O in Device DriversI/O in Device Drivers

The Kernel defines two callback interfaces for drivers:

Fast I/O

Rapid synchronous I/O only, mostly for File System Drivers

Direct from user buffers to system cache (less copying)

I/O Request Packets

Default I/O for most operations:

Both synchronous and asynchronous I/O

Page faults implemented by IRPs to file system

Networking – send/recv implemented as IRPs

Driver may define additional entry points/callbacks. Fast I/O is used primarily for File System
Drivers (FSDs), and is left out of the scope of this course.

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 100

I/O in Device Drivers

IRPs

• I/O operations are put into “I/O Request Packets”

• IRPs pass up and down the driver stack

• Every driver owns an “IO_STACK_LOCATION” in IRP

• Top level (creator of IRP) must set up IRP “stack size”

• Structure documented, but remains semi-opaque
– Structs of Unions of Structs – very volatile

I/O in Device DriversI/O in Device Drivers

A fundamental concept in the Windows I/O architecture is that of an I/O Request Packet , or IRP.

I/O in Device Drivers

(C) 2009 JL@HisOwn.com 101

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 102

IRPs - I/O Request Packets
• IRP_MJ: “Major” Requests
• IRP_MN: “Minor” (sub) Requests (e.g. for IRP_MJ_PNP)

• Common Major request types:

IRP_MJ_ Use

CREATE File/Socket/Dir creation open

CLOSE File/Socket/Dir close

DEVICE_CONTROL Ioctl/DeviceIoControl

FILESYSTEM_CONTROL Various FSD operations

READ Read operation

QUERY_INFORMATION Get information on descriptor

SET_INFORMATION Set information of descriptor

WRITE Write operation

I/O in Device DriversI/O in Device Drivers

Kernel drivers (with the exception of
NDIS and FSD) generally communicate
through I/O Request Packets. These
“packets” are semi opaque objects.

The Kernel defines IRP_MJ_ types,
corresponding to “Major” codes, and
IRP_MN_ types, corresponding to
“Minor” codes.

The Major codes are for the various
request operations, the important ones of
which are shown above. The Minor
codes are sub codes for a particular
Major – for example, Plug and Play
operations all have the same Major code,
IRP_MJ_PNP, but specific minor codes
for starting/stopping devices, etc.

I/O in Device Drivers

typedef struct _IRP {
…
PMDL MdlAddress;
ULONG Flags;
union {

…
PVOID SystemBuffer;

} AssociatedIrp;
…
IO_STATUS_BLOCK IoStatus;
KPROCESSOR_MODE RequestorMode;

…
BOOLEAN Cancel; // The cancel bit
…
PDRIVER_CANCEL CancelRoutine;
PVOID UserBuffer;
union {

struct { ..
union {

KDEVICE_QUEUE_ENTRY DeviceQueueEntry;
struct {

PVOID DriverContext[4];
};

};
…
PETHREAD Thread;
LIST_ENTRY ListEntry;
.. } Overlay;
} Tail;

} IRP, *PIRP;

IRPs
MdlAddress

Flags

AssociatedIrp

ThreadListEntry

IoStatusBlock

CurrentLocationStackCountPendingReturnedRequestorMode

AllocationFlagsApcEnvironmentCancelIrqlCancel

UserIosb

UserEvent

Overlay

CancelRoutine

UserBuffer

I/O in Device DriversI/O in Device Drivers

Type Size

RequestorMode : KernelMode or UserMode

PendingReturned: IoMarkIrpPending

Cancel: IRP has been canceled

CancelRoutine : IRP Cancel Routine set by driver

Flags: Read-only for File System Drivers
IRP_NOCACHE, IRP_PAGING_IO, IRP_MOUNT_COMPLETION
IRP_SYNCHRONOUS_API, IRP_ASSOCIATED_IRP,
IRP_BUFFERED_IO, IRP_DEALLOCATE_BUFFER
IRP_INPUT_OPERATION, IRP_SYNCHRONOUS_PAGING_IO
IRP_CREATE_OPERATION, IRP_READ_OPERATION
IRP_WRITE_OPERATION, IRP_CLOSE_OPERATION
IRP_DEFER_IO_COMPLETION

Tail: Structures for Kernel Use

Overlay: APC associated with this IRP
Tail

Type: Specifies this structure to be an IRP. Reserved.

Size: sizeof (struct IRP) +
StackCount * sizeof(IO_STACKLOCATION)

The illustrations on the next three pages show the IRP structure. Notice how it is aligned in
memory for fast access.

It should be noted that most of these fields are NOT to be handled directly, and there exist
functions and macros for that.

I/O in Device Drivers

(C) 2009 JL@HisOwn.com 103

IRPs
MdlAddress

Flags

AssociatedIrp

ThreadListEntry

IoStatusBlock

CurrentLocationStackCountPendingReturnedRequestorMode

AllocationFlagsApcEnvironmentCancelIrqlCancel

UserIosb

UserEvent

Overlay

CancelRoutine

UserBuffer

I/O in Device DriversI/O in Device Drivers

Type Size

ThreadListEntry.flink

ThreadListEntry.blink

Owning Thread TCB.
IRP is also referenced (along with any others)
from thread’s IRPList

Tail

DeviceQueueEntry | DriverContext

Thread

AuxilliaryBuffer

ListEntry.flink

CurrentStackLocation | PacketType

OriginalFileObject

APC

CompletionKey

ETHREAD

IRPList.flink

IRPList.blink

DeviceExtension

IRPQueue.flink

IRPQueue.blinkListEntry.blink

O
V
E
R
L
A
y

FILE_OBJECT

Owning Device Object:
IRP is also referenced (along with any others)
from device’s IRPQueue.

Lastly, the IRP “Tail” is a union containing all the fields that the IRP cannot hope to align. Most of these
fields are in an “overlay” struct, and they link the IRP to its corresponding device and thread.

union {
struct {

union {
KDEVICE_QUEUE_ENTRY DeviceQueueEntry;
struct { PVOID DriverContext[4]; } ;

} ;

PETHREAD Thread;
PCHAR AuxiliaryBuffer;

struct {
LIST_ENTRY ListEntry;
union {

struct _IO_STACK_LOCATION *CurrentStackLocation;
ULONG PacketType;

};
};
PFILE_OBJECT OriginalFileObject;

} Overlay;

KAPC Apc;
PVOID CompletionKey;

} Tail;

I/O in Device Drivers

(C) 2009 JL@HisOwn.com 104

IRPs
MdlAddress

Flags

AssociatedIrp

ThreadListEntry

IoStatusBlock

CurrentLocationStackCountPendingReturnedRequestorMode

AllocationFlagsApcEnvironmentCancelIrqlCancel

UserIosb

UserEvent

Overlay

CancelRoutine

UserBuffer

Tail

I/O in Device DriversI/O in Device Drivers

Next

Type Size

Size MdlFlags

Process

MappedSystemVa

StartVa

ByteCount

ByteOffset

MasterIrp

IrpCount

SystemBuffer

….

IRPs actual data buffers are either:
– Supplied in MDL in MDLAddress (DIRECT I/O)

– Pointed to by AssociatedIrp.SystemBuffer (BUFFERED I/O)

– Specified as direct User buffer pointer (NEITHER)

IRPs relate to I/O requests, and therefore point to data buffers. It’s not that simple, however, as
there are three modes of access to data buffers:

DIRECT I/O: In which the IRP contains a pointer to an MDL (in the MdlAddress field, as shown
above). This MDL contains the virtual pages associated with the IRP, and it is the device driver’s
responsibility to lock these pages in memory.

BUFFERED I/O: In which the IRP contains a pointer to locked in memory pages – the I/O
manager takes care of all the lock operations, etc. However, this involves buffering and therefore
an extra copy operation. So, while it is easier to handle, it is also more expensive performance-
wise.

NEITHER: Used in I/O Control codes (IOCTLs, described later), this mode simply passes the
user buffer address to the driver. The driver needs to prepare and handle the MDL.

The Device object specifies the preferred mode of operation in its Flags (see page 80). IOCTLs,
however, may use any of the modes.

I/O in Device Drivers

(C) 2009 JL@HisOwn.com 105

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 106

Next Driver(s)

IRPs - I/O Request Packets
Synchronous IRPs

O
bject M

anager

S
ecurity R

ef M
onitor

1. fopen()

2. CreateFile()

3. ntdll!NtCreateFile()

4. KiSystemService()NTOSKRNL.EXE

NTDLL.DLL

Kernel32.DLL

User Applications

I/O in Device DriversI/O in Device Drivers

7. Lookup Object

5. nt!NtCreateFile()

8. Check access rights vs. Token

6. Locate File

8. IoAllocateIrp()

9. IoCallDriver()

Top Level Driver

I/O
 M

anager

Device

11. return (IoCallDriver()…)

10. Major Function..

12. I/O from actual device

13. return (…)

After getting familiar with the IRP structure, we can next look at the typical flow of an I/O request –
from inception (usually, in user mode) down to the device.

This slide depicts the process of such a typical I/O request – in this case a file “fopen()” from the C
standard library. This is a synchronous request, meaning the process blocks until the I/O returns.

I/O in Device Drivers

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 107

Next Driver(s)

IRPs - I/O Request Packets
Asynchronous IRPs

O
bject M

anager

S
ecurity R

ef M
onitor

1. fopen()

2. CreateFile()

3. ntdll!NtCreateFile()

4. KiSystemService()NTOSKRNL.EXE

NTDLL.DLL

Kernel32.DLL

User Applications

I/O in Device DriversI/O in Device Drivers

7. Lookup Object

5. nt!NtCreateFile()

8. Check access rights vs. Token

6. Locate File

8. IoAllocateIrp()

9. IoCallDriver()

15. APC

Top Level Driver

IoCompleteRequest()

I/O
 M

anager

Device

11. SetCompletionRoutine
Return (IoCallDriver()…)

10. Major Function..

13. DpcForIsr()

Bottom level Driver
12. IOMarkIRPPending()

Return (STATUS_PENDING)

16. User APC

Processing of Asynchronous IRPs is similar all the way up to the first driver called by the I/O
manager. Drivers determining a request to be potentially asynchronous still push the IRP down
the stack, but may each opt to set an IRP Completion Routine of their own.

When the bottom driver processes the request, it usually submits a request to the hardware
device, IoMarkIrpPending() and returns a STATUS_PENDING. This bubbles up the driver chain
back to the I/O manager.

The IRP is completed in a truly asynchronous manner when some other entity chooses to call
IoCompleteRequest() on it. This function is usually called from the device driver who set the
interrupt handler (ISR) on the device. IoCompleteRequest () then calls the completion routines of
the IRP, in reverse order. Finally, it signals the I/O manager that the IRP is indeed complete,
which in turn schedules an Asynchronous Procedure Call (APC), and completes any user APCs
that may have been scheduled, as well.

I/O in Device Drivers

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 108

Handling IRPs

• Drivers implement IRP dispatcher callback functions

NTSTATUS DispatcherName(IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp);

• All dispatchers implement the same interface

pDriverObject-> MajorFunction[IRP_DISPATCHED] = … ;

• Simplest implementation: One dispatcher, switch()

I/O in Device DriversI/O in Device Drivers

The DRIVER_OBJECT struct has an array of MajorFunction s, with indices corresponding to all
the major IRP types shown so far – that is, the IRP_MJ constants, which are actually implemented
as an enum.

I/O in Device Drivers

To handle IRPs, we would have our driver main function look something like this:

Since all dispatchers implement the same prototype, it’s often simpler to just implement one,
and register it to multiple IRPs, perhaps even all of them.To register more than one IRP to the
same IRP Dispatcher you could use something like:

Listing 1 : Stub Driver, Entry Function, IRP Dispatcher registration

// Prototype – We’ll implement this later..
NTSTATUS driverIRPDispatcher(PDEVICE_OBJECT DeviceObject, PIRP Irp);

// Our DriverEntry function:
NTSTATUS DriverEntry (IN PDRIVER_OBJECT pDriverObject,

IN PUNICODE_STRING strRegistryPath)
{

pDriverObject-> DriverUnload = driverCleanupFunction;

DbgPrint(“Driver:: Hello, Kernel!\n");
return STATUS_SUCCESS;

}

// Register Callback some IRP, say, IRP_MJ_READ
pDriverObject->MajorFunction[IRP_MJ_READ] = driverIRPDispatcher;

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 109

I/O in Device Drivers

Not all IRPs must be handled. As the following example shows, IRPs that do not have installed handlers
are handled by IopInvalidDeviceRequest, which returns an error code for the IRP.

kd> !drvobj kmixer 7
Driver object (8697a988) is for:

\Driver\kmixer
Driver Extension List: (id , addr)

Device Object list:
Device object (8653f528) is for:

\Driver\kmixer DriverObject 8697a988
Current Irp 00000000 RefCount 0 Type 0000002f Flags 0 0002010
DevExt 8653f5e0 DevObjExt 8653f5e8
ExtensionFlags (0000000000)
AttachedTo (Lower) 866d9570 \Driver\swenum
Device queue is not busy.

DriverEntry: b7203105 kmixer!GsDriverEntry
DriverStartIo: 00000000
DriverUnload: b71ea610 kmixer!DriverUnload

Dispatch routines:
[00] IRP_MJ_CREATE f7039fe2 ks! DispatchCreate
[01] IRP_MJ_CREATE_NAMED_PIPE 804fb8de nt!IopInvalidDeviceRequest
[02] IRP_MJ_CLOSE f7039711 ks! DispatchClose
[03] IRP_MJ_READ 804fb8de nt!IopInvalidDeviceRequest
[04] IRP_MJ_WRITE f70391cc ks! DispatchWrite
[05] IRP_MJ_QUERY_INFORMATION 804fb8de nt!IopInvalidDeviceRequest
[06] IRP_MJ_SET_INFORMATION 804fb8de nt!IopInvalidDeviceRequest
[07] IRP_MJ_QUERY_EA 804fb8de nt!IopInvalidDeviceRequest
[08] IRP_MJ_SET_EA 804fb8de nt!IopInvalidDeviceRequest
[09] IRP_MJ_FLUSH_BUFFERS 804fb8de nt!IopInvalidDeviceRequest
[0a] IRP_MJ_QUERY_VOLUME_INFORMATION 804fb8de nt!IopInvalidDeviceRequest
[0b] IRP_MJ_SET_VOLUME_INFORMATION 804fb8de nt!IopInvalidDeviceRequest
[0c] IRP_MJ_DIRECTORY_CONTROL 804fb8de nt!IopInvalidDeviceRequest
[0d] IRP_MJ_FILE_SYSTEM_CONTROL 804fb8de nt!IopInvalidDeviceRequest
[0e] IRP_MJ_DEVICE_CONTROL f7038f60 ks! DispatchDeviceIoControl
[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL 804fb8de nt!IopInvalidDeviceRequest
[10] IRP_MJ_SHUTDOWN 804fb8de nt!IopInvalidDeviceRequest
[11] IRP_MJ_LOCK_CONTROL 804fb8de nt!IopInvalidDeviceRequest
[12] IRP_MJ_CLEANUP 804fb8de nt!IopInvalidDeviceRequest
[13] IRP_MJ_CREATE_MAILSLOT 804fb8de nt!IopInvalidDeviceRequest
[14] IRP_MJ_QUERY_SECURITY 804fb8de nt!IopInvalidDeviceRequest
[15] IRP_MJ_SET_SECURITY 804fb8de nt!IopInvalidDeviceRequest
[16] IRP_MJ_POWER f70327cf ks! KsDefaultDispatchPower
[17] IRP_MJ_SYSTEM_CONTROL b72014d0 kmi xer!PerfWmiDispatch
[18] IRP_MJ_DEVICE_CHANGE 804fb8de nt!IopInvalidDeviceRequest
[19] IRP_MJ_QUERY_QUOTA 804fb8de nt!IopInvalidDeviceRequest
[1a] IRP_MJ_SET_QUOTA 804fb8de nt!IopInvalidDeviceRequest
[1b] IRP_MJ_PNP b71ea570 kmi xer!DispatchPnp

pDriverObject->MajorFunction[IRP_TO_PROCESS] =
..

pDriverObject->MajorFunction[IRP_TO_ALSO_PROCESS] = driverIRPDispatcher;

IRP Debugging

Useful Tools:
KD:

!irpfind: Find all active IRPs in the system
!irp: Display IRP specific data

OSR: IRPTracker

The Kernel Debugger offers powerful extensions for diagnosing and debugging IRPs. The first is
“!irpfind”, that searches the non-paged pool for memory allocations with a tag of “Irp”, and then
walks them, and provides summary data:

I/O in Device Drivers

kd> !irpfind
Searching NonPaged pool (81337000 : 82400000) for Tag: Irp?

Irp [Thread] irpStack: (Mj,Mn) DevObj [Driver] MDL Process
81d674e8 [81f24558] irpStack: (e,2d) 821612a0 [\Driver\AFD]
81e2eb28 [81f23368] irpStack: (e,2d) 821612a0 [\Driver\AFD]
81e332b0 [8226dda8] irpStack: (c, 2) 8232e020 [\FileSystem\Ntfs]
81e3c008 [00000000] Irp is complete (CurrentLocation 3 > StackCount 2) 0x823b4788
81e3c528 [00000000] Irp is complete (CurrentLocation 3 > StackCount 2) 0x823b4788
81e3cd78 [00000000] Irp is complete (CurrentLocation 3 > StackCount 2) 0x823b4788
81e63570 [81e3d560] irpStack: (c, 2) 8232e020 [\FileSystem\Ntfs]
81e6a238 [82336a08] irpStack: (e,43) 821612a0 [\Driver\AFD]
81e70528 [00000000] Irp is complete (CurrentLocation 3 > StackCount 2) 0x823b4788
81e70950 [00000000] Irp is complete (CurrentLocation 3 > StackCount 2) 0x823b4788
81e70be0 [00000000] Irp is complete (CurrentLocation 3 > StackCount 2) 0x823b4788

81e8c3a0 [00000000] irpStack: (0, 0) 823078a8 [\Driver\Cdrom]

The table lists the IRPs found, their owning threads (a PETHREAD), the owning device object,
Device Driver, IRP Major and Minor code, and MDL, if any.

(C) 2009 JL@HisOwn.com 115

Specific detail for a particular IRP can then be displayed using “!irp” on the IRP address:

kd> !irp 81e332b0
Irp is active with 8 stacks 8 is current (= 0x81e334 1c)

No Mdl: No System Buffer: Thread 8226dda8: Irp stac k trace.
cmd flg cl Device File Completion-Context

[0, 0] 0 0 00000000 00000000 00000000-00000000

Args: 00000000 00000000 00000000 00000000
……

>[c, 2] 1 1 8232e020 822f3400 00000000-0000000 0 pending
\FileSystem\Ntfs

Args: 00000020 00000017 00000000 00000000

As well as, of course, other commands, like !thread and !devobj. !thread is especially useful, as it
shows the thread’s entire IRPList, as well as the process name.

kd> !thread 8226dda8
THREAD 8226dda8 Cid 0670.06ac Teb: 7ffd6000 Win32 Thread: e195aad0 WAIT:
……
IRP List:

82297248: (0006,0190) Flags: 00000000 Mdl: 0000000 0
82261b68: (0006,0190) Flags: 00000000 Mdl: 0000000 0
81ea9dd8: (0006,0190) Flags: 00000000 Mdl: 0000000 0
82035e70: (0006,0190) Flags: 00000000 Mdl: 0000000 0
81e41008: (0006,0190) Flags: 00000000 Mdl: 0000000 0
822db3e0: (0006,0190) Flags: 00000000 Mdl: 0000000 0
81e332b0: (0006,0190) Flags: 00000000 Mdl: 0000000 0

Not impersonating
DeviceMap e1cc4470
Owning Process 0 Image: <U nknown>
Attached Process 820cbda0 Image: explorer.exe
……

DT’ing also helps:

kd> dt !_IRP 81e332b0
ntdll!_IRP

+0x000 Type : 6
+0x002 Size : 0x190
+0x004 MdlAddress : (null)
+0x008 Flags : 0
+0x00c AssociatedIrp : __unnamed
+0x010 ThreadListEntry : _LIST_ENTRY [0x8226dfb8 - 0 x822db3f0]
+0x018 IoStatus : _IO_STATUS_BLOCK
+0x020 RequestorMode : 1 ''
+0x021 PendingReturned : 0 ''
+0x022 StackCount : 8 ''
+0x023 CurrentLocation : 8 ''
+0x024 Cancel : 0 ''
+0x025 CancelIrql : 0 ''
+0x026 ApcEnvironment : 0 ''
+0x027 AllocationFlags : 0xc ''
+0x028 UserIosb : 0x7c8837e0 _IO_STATUS_BLOCK
+0x02c UserEvent : (null)
+0x030 Overlay : __unnamed
+0x038 CancelRoutine : 0x80512601 void nt!FsRtl CancelNotify+0
+0x03c UserBuffer : 0x7c883800
+0x040 Tail : __unnamed

I/O in Device Drivers

(C) 2009 JL@HisOwn.com 116

Because, remembering that “Tail” contains many useful parameters the Kernel associates this
IRP with, one can quickly deduce:

kd> dd 81e332b0 + 0x40
81e332f0 00000000 00000000 00000000 00000000
81e33300 8226dda8 00000000 e187ab68 e187ab68
81e33310 81e3341c 822f3400 00000000 00000000
81e33320 00000000 00000000 00000000 00000000
81e33330 00000000 00000000 00000000 00000000
81e33340 00000000 00000000 00000000 00000000
81e33350 00000000 00000000 00000000 00000000
81e33360 00000000 00000000 00000000 00000000
lkd> dt _FILE_OBJECT 822f3400
ntdll!_FILE_OBJECT

+0x000 Type : 5
+0x002 Size : 112

……
+0x02c Flags : 0x40000
+0x030 FileName : _UNICODE_STRING "\Docume~1\All Users\Desktop"
……

For real time statistics, either attach a Kernel Debugger, or use OSR’s “IRPTracker” Utility. The
figure below shows a capture of a “type C:\temp.txt” command from cmd.exe.

I/O in Device Drivers

(C) 2009 JL@HisOwn.com 117

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 254

Command Use

d Dump memory address. Can further specify:
a – ASCII
d – Dword
t - as type – provide a structure name to overlay (needs symbols)
v - Variables local to scope (processes only)
ps – Pointers and Symbols
u – Unicode

k Dump current thread stack

lm List loaded and unloaded modules (useful to find drivers)

ln List Nearest Symbols to address or symbol

r Show/set registers

s Search memory

u Unassemble memory address or symbol.
Also: ub (unassemble backwards from address/symbol)

.sympath+ Fix symbol path and append MS Symbol Server

.reload Force reloading of Kernel Symbols

Windows Debugger Cheat Sheet

Show Drive object of name (from lm)!drvobj

Command Use

!analyze Crash dump analysis. The author’s favorite ☺

!devobj Show Device object at address

!devstack Show Device Driver Stack for a given device

!idt Show Kernel’s Interrupt descriptor table (e.g. INT 2e)

!process Show PEB at address (try “0”)

!thread Show TEB at address (try “0”)

!pool, !pooltag, !poolfind Pool debugging

!irpfind, !irp Find IRPs in NonPagedPool, Display IRP contents

Useful Debugger Extensions:

Appendix

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 256

Networking Protocols – OSI Layers 2-4:
Focusing on - Ethernet, Wi-Fi, IPv4, IPv6, TCP, UDP and SCTP

Application Protocols – OSI Layers 5-7:
Including - DNS, FTP, SMTP, IMAP/POP3, HTTP and SSL

VoIP:
In depth discussion of H.323, SCCP, SIP and RTP/RTCP, down to the packet level.

Windows Networking Internals:

NetBIOS/SMB, CIFS, DCE/RPC, Kerberos, NTLM, and networking architecture

Linux Survival and Basic Skills:

Graceful introduction into the wonderful world of Linux for the non-command line oriented user. Basic
skills and commands, work in shells, redirection, pipes, filters and scripting

Linux Administration:

Follow up to the Basic course, focusing on advanced subjects such as user administration, software
management, network service control, performance monitoring and tuning.

Linux User Mode Programming:

Programming POSIX and UNIX APIs in Linux, including processes, threads, IPC mechanisms and
networking. Linux User experience required.

Linux Kernel Programming:

Guided tour of the Linux Kernel, 2.4 and 2.6, focusing on design, architecture, writing device drivers
(character, block), performance and network devices

Embedded Linux Kernel Programming:

Similar to the Linux Kernel programming course, but with a strong emphasis on development on non-
intel and/or tightly constrained embedded platforms

Windows Programming:

Windows Application Development, focusing on Processes, Threads, DLLs, Memory Management,
and Winsock

Windows Kernel Programming (this course):

Windows Kernel Architecture and Device Driver development – focusing on Network Device Drivers
(in particular, NDIS) and the Windows Driver Model. Updated to include NDIS 6 and Winsock Kernel

Cryptography:

From Basics to implementations in 5 days: foundations, Symmetric Algorithms, Asymmetric
Algorithms, Hashes, and protocols. Design, Logic and implementation

Application Security

Writing secure code – Dealing with Buffer Overflows, Code, SQL and command
Injection, and other bugs… before they become vulnerabilities that hackers can exploit.

…If you liked this course, consider…

Linux :

Networking:

Windows:

Security:

